The Recognizability Strength of Infinite Time Turing Machines with Ordinal Parameters

نویسندگان

  • Merlin Carl
  • Philipp Schlicht
چکیده

We study infinite time Turing machines that attain a special state at a given class of ordinals during the computation. We prove results about sets that can be recognized by these machines. For instance, the recognizable sets of natural numbers with respect to the cardinal-detecting infinite time Turing machines introduced in [Hab13] are contained in a countable level of the constructible hierarchy, and the recognizable sets of natural numbers with respect to finitely many ordinal parameters are constructible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite time recognizability from generic oracles and the recognizable jump operator

By a theorem of Sacks, if a real x is recursive relative to all elements of a set of positive Lebesgue measure, x is recursive. This statement, and the analogous statement for non-meagerness instead of positive Lebesgue measure, have been shown to carry over to many models of transfinite computations in [11]. Here, we start exploring another analogue concerning recognizability rather than compu...

متن کامل

Infinite Computations with Random Oracles

We consider the following problem for various infinite time machines. If a real is computable relative to large set of oracles such as a set of full measure or just of positive measure, a comeager set, or a nonmeager Borel set, is it already computable? We show that the answer is independent from ZFC for ordinal time machines (OTMs) with and without ordinal parameters and give a positive answer...

متن کامل

Post's Problem for Ordinal Register Machines

We study Post’s Problem for the ordinal register machines defined in [6], showing that its general solution is positive, but that any set of ordinals solving it must be unbounded in the writable ordinals. This mirrors the results in [3] for infinite-time Turing machines, and also provides insight into the different methods required for register machines and Turing machines in infinite time.

متن کامل

Recognizable Sets and Woodin Cardinals: Computation beyond the Constructible Universe

We call a subset of an ordinal λ recognizable if it is the unique subset x of λ for which some Turing machine with ordinal time and tape, which halts for all subsets of λ as input, halts with the final state 0. Equivalently, such a set is the unique subset x which satisfies a given Σ1 formula in L[x]. We prove several results about sets of ordinals recognizable from ordinal parameters by ordina...

متن کامل

Space Bounds for Infinitary Computation

Infinite Time Turing Machines (or Hamkins-Kidder machines) have been introduced in [HaLe00] and their computability theory has been investigated in comparison to the usual computability theory in a sequence of papers by Hamkins, Lewis, Welch and Seabold: [HaLe00], [We00a], [We00b], [HaSe01], [HaLe02], [We04], [We05] (cf. also the survey papers [Ha02], [Ha04] and [Ha05]). Infinite Time Turing Ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017